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ABSTRACT

In this work we present an improved evolutionary method
for inferring S-system model of genetic networks from the
time series data of gene expression. We employed Differ-
ential Evolution (DE) for optimizing the network parame-
ters to capture the dynamics in gene expression data. In a
preliminary investigation we ascertain the suitability of DE
for a multimodal and strongly non-linear problem like gene
network estimation. An extension of the fitness function
for attaining the sparse structure of biological networks has
been proposed. For estimating the parameter values more
accurately an enhancement of the optimization procedure
has been also suggested. The effectiveness of the proposed
method was justified performing experiments on a genetic
network using different numbers of artificially created time
series data.

Categories and Subject Descriptors

J.3 [Life and Medical Sciences|: Biology and genetics;
1.2.1 [Applications and Expert Systems|: Medicine and
science; G.1.6 [Optimization]: Global Optimization

General Terms

Experimentation, Algorithms, Performance

Keywords

S-system, Gene regulatory network, Differential Evolution,
Microarray data, Reverse Engineering

1. INTRODUCTION

Gene regulatory networks are complex biological systems
which are dynamic and highly nonlinear in nature and com-
prise of many interacting components. Because of poor un-
derstanding of these biological components, their dependen-
cies, interaction and nature of regulation grounded on molec-
ular level, it is difficult to model these complex mechanisms
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mathematically [13]. However the tremendous advancement
in molecular biology along with the help of cutting edge tech-
nologies such as DNA microarrays enables us cell-wide mon-
itoring of gene and protein expression. And these massive
amounts of biological data have grown interest among many
researchers to use the model-based identification methods
for inferring the possible regulatory architectures in genetic
networks.

A genetic network model aims to capture the interrelated
regulatory mechanisms among genes. Several genetic net-
work models have been proposed, which integrate biochemi-
cal pathway information and expression data to trace genetic
regulatory interactions [1, 9, 12, 3]. The modeling spectrum
ranges from abstract Boolean descriptions to detailed Dif-
ferential Equation based models, where every representation
has its advantages and limitations. Given a dynamic model
of gene interactions, the problem of gene network inference is
equivalent to learning the structural and functional param-
eters from the time series representing the gene expression
kinetics, i.e. the network architecture is reverse engineered
from its activity profiles.

Among the familiar models for describing biochemical net-
works, a well studied one is S-system which is rich enough
to reasonably capture the nonlinearity of genetic regulation
[14]. S-system model is based on a set of non-linear ordinary
differential equation in which the component processes are
characterized by power-law functions of the form
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where N is the number of network components or reactants
(X5),14,7(1 <14,5 < N) are suffixes of components. The terms
gi; and h;; represent interactive affectivity of X; to X;. The
first term represents all influences that increase X;, whereas
the second term represents all influences that decrease X;.
From the biological point of view, the two terms in right-
hand side of (1) represent the productive and inhibitory
regulation respectively, influencing the variable at the left
hand side of the equation. The parameters that define the
S-system are: {«, 3,9, h}. In a biochemical engineering con-
text, the non-negative parameters «; , 3; are called rate con-
stants, and real-valued exponents g;; and h;; are referred to
as kinetic orders.

Since the details of the molecular mechanisms that govern
interactions among system components are not substantially
known or well understood, the description of these processes
requires a representation that is general enough to capture



the essence of the experimentally observed response. The
strength of S-system model is its structure which is rich
enough to satisfy these requirements and to capture all rel-
evant dynamics; an observed response (dynamic response)
may be monotone or oscillatory, it may contain limit cycles
or exhibit deterministic chaos [19]. Furthermore, the simple
homogeneous structure of S-system has a great advantage
in terms of system analysis and control design, because the
structure allows analytical and computational methods to
be customized specifically for this structure [6].

Tominaga et al. [19] formulated the S-system based gene
network estimation as an optimization problem and they
used Genetic Algorithm (GA) to estimate model parameters.
Since methods for finding analytic solution for this problem
is almost impracticable, use of Ewvolutionary Computation
(EC) has become more feasible and popular approach among
researchers [2, 7, 11, 15] . But because of high complexity of
the problem these works still could not estimate the network
topology and parameter values with high accuracy.

In this paper we propose an improved algorithm that finds
the parameter values for S-system model based networks
with higher accuracy using Differential Evolution (DE). An
extension of the function for evaluating the estimated pa-
rameter set is also suggested. The effectivity of DE for a
complex problem like S-system based genetic network in-
ference was probed in a preliminary study. Then we used
the modified fitness function and an enhanced algorithm for
estimating the correct network topology and parameter val-
ues. Numerical experiments show that the proposed en-
hancements attain higher accuracy and efficiency compared
to conventional methods. The paper is organized as follows.
In the next section we present a brief overview of DE and
the preliminary experiment to check the suitability of DE
for gene network estimation. In Section 3 our proposed al-
gorithm for parameter estimation of S-system model based
gene networks is presented. Section 4 reports the experi-
ments to verify the effectiveness of the proposed method.
The experimental results are presented in Section 5. Finally
a brief discussion is presented in Section 6 followed by the
conclusion in Section 7.

2. OPTIMIZING SSYSTEM MODEL US
ING DE

2.1 Basic Problem Definition

In the form of optimization problem each set of parame-
ters estimated for the S-system model of a genetic network is
evaluated as follows. Suppose that X; cq1,+ is gene expression
level of gene X; at time ¢ calculated numerically by solving
the system of differential equation of (1) for the estimated
parameter set, and Xj cq.p,+ represents the experimentally
observed gene expression level of X; at time ¢. Sum of the
relative squared error between X; cqr,+ and X exp,: is taken
as the relative standard error f for fitness estimation [19]

N T 2
=33 )l
i=1 t=1
where N is the number of state variables, T" is the number
of sampling points of the experimental data. The problem
is to find a set of parameters that minimizes f.

The problem has the difficulty of high-dimensionality, since
2N (N 4+ 1) S-system parameters must be determined in or-

Xi,cal,t - Xi,ezp,t

Xi,eacp,t
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der to solve the set of differential equations (1). And estima-
tion of parameters for a 2N (N + 1) dimensional function op-
timization problem often causes bottlenecks and fitting the
model to experimentally observed responses (time course of
relative state variables or reactants) is never straightforward
and is almost always difficult.

2.2 Differential Evolution

Differential Evolution (DE) is an effective, efficient and ro-
bust optimization method [17] capable of handling nondiffer-
entiable, nonlinear and multimodal objective functions. The
beauty of this algorithm is its simple and compact structure,
which uses a stochastic direct search approach and utilizes
common concepts of EAs. Furthermore DE uses few, easily
chosen, parameters and surprisingly works very reliably with
excellent overall results for a wide set of benchmark func-
tions and real-world problems. Experimental results have
shown that DE has good convergence properties and out-
performs other well known EAs [17][16]. Because of these
admirable properties we have chosen DE as optimizer for
gene network inference problem.

In DE new individuals are generated by the combination
of randomly chosen individuals from the population. Specif-
ically, for each individual z&, i =1, --- , P, where G denotes
the current generation, a new individual y2;+1is generated
according to the following equation

®3)

where j,k and [ are random integers such that j, k and
le{l,--- ,P}and i # j # k # l and F is called scaling factor
or amplification factor. This operation is similar to what
is commonly known as mutation to EC community. In or-
der to achieve higher diversity the mutated individual y4 11
is mated with the current population member z% using a
crossover operation to generate the offspring or trial indi-
vidual xiGH. The genes of xiGH are randomly inherited from
x5 or y& 11 determined by a parameter called crossover fac-
tor CF,i.e. if r < CF (where r is a uniform random number
in [0, 1]) then it is inherited from z§; otherwise from y&. ;.
Finally the offspring is evaluated and replaces its parent
in next generation if and only if its fitness is better than
that of its parent. This is the selection process.

Recently Fan and Lampinen have proposed a Trigonomet-
ric Mutation Operation (TMO) for DE to accelerate its con-
vergence rate and robustness [4] which is defined as
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This TMO is applied with a probability of M; along with the
regular mutation operation given by (3) and this modified
DE algorithm is called Trigonometric mutation DE (TDE).
Since the trigonometric mutation operation is a rather greedy
search operator, this modification of the DE algorithm makes
it possible to straightforwardly adjust the balance between
the convergence rate and the robustness through the newly
introduced parameter, M;. The greediness of the algorithm
can be tuned conveniently by increasing or decreasing M.



2.3 Optimization Performance of DE

To evaluate the performance of DE for a deceptive and
highly multimodal search space, we perform preliminary
experiments with two artificial gene network with N = 5.
For each network we created artificial time series by in-
tegrating the S-system from top =0 to tmaex using fourth
order Runge-Kutta algorithm and taking equidistant sam-
ple points. These artificial microarray data sets were re-
engineered by DE and TDE algorithm. The time series data
used for optimization of the first network is shown in Fig-
ure 1. Due to the fact that gene networks in nature are
sparse systems, we created this network randomly with a
maximum cardinality of x < 3. The dynamics for the sec-
ond network (shown in Figure 2) was created simulating the
network model in Table 1 using the initial gene expression
levels of the first data set shown in Table 2. From each time-
course for the first network 25 sample points were used for
optimization and for second network 50 samples were used
from each time-course.
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Figure 1: Target time dynamics of first gene network
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Figure 2: Target time dynamics of second gene net-
work

To compare the results with established inference meth-
ods we also used a standard Fvolutionary Strategy (ES) and
Genetic Algorithm (GA) to optimize the networks. Infer-
ence by a standard ES was performed using a (u, A)-ES
with p = 10 parents and A = 100 offsprings together with
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a Covariance Matrix Adaptation (CMA-1) mutation opera-
tor without recombination [5]. On the other hand GA em-
ployed minimal generation gap (MGG) model with Simplex
Crossover (SPX) and static Gaussian mutation operation
[20]. For preserving the best solutions we extended the orig-
inal model of GA in [20] with elitist strategy where the per-
centage of elite individuals was itself mutated with genera-
tion. The implementation details about the used GA and
ES models could be found in [20] and [5] respectively.

In order to make the performance comparison fairer we
used the same sets of initial random populations for evalu-
ating different algorithms. Each experiment was repeated 20
times in this fashion. Maximum number of evaluations al-
lowed for each algorithm was 1,000,000. The parameter set-
ting for DE and/or TDE was as follows: F' = 0.5, CF = 0.8,
and M; = 0.05. Population size for DE, TDE and GA was
chosen 600 and ES was initialized by 10 random solutions
among these 600 individuals. For other parameters of GA
and ES values were chosen as suggested in [20] and [5] re-
spectively.
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Figure 3: Convergence course for first gene network

The fitness transitions for different algorithms in these
two experiments are shown in Figure 3 and Figure 4 re-
spectively. Though not shown in the graph of Figure 3, ES
started with worse fitness value due to the smaller popula-
tion size, whereas the other three schemes, initialized with
same and equal number of individuals, started with same
fitness value. ES started with a steeper convergence curve
in the beginning, but started to become almost stagnate af-
ter approximately 400,000 evaluations on average. In case
of GA it was progressing slowly compared to ES in the be-
ginning but continue to improve fitness value (though very
slowly) until almost 750,000 evaluations on average and was
able to reach a better fitness value compared to ES. In con-
trast to this, both DE strategies were successful to reach a
much better fitness value compared to that of ES and GA.
The basic DE strategy showed slowest convergence rate in
the beginning but was steady in reaching a very good fitness
value. On the other hand TDE algorithm started with a con-
vergence rate almost like GA but continued to improve the
fitness value up to a point where all other strategies conver-
gence curve became almost horizontal. More or less similar
relative performance was observed in the second experiment



100

10 4
[7)
0
£ 1
=
—DE
0.1 - — TDE
—ES
GA
0.01 \ T \ \
0 200000 400000 600000 800000

Number of evalutions

Figure 4: Convergence course for second gene net-
work

as shown in Figure 4. Here one important observation is, use
of more samples from each time course has improve the per-
formance of TDE much compared to other three algorithms.
Figure 4, plotted in a logarithmic scale, suggests that TDE
strategy continues to improve the fitness value and seems
not to be converged at the end of the optimization, which
suggests even better results, with a higher number of fit-
ness evaluations, is possible. These results suggest that the
TDE algorithm is able to find a network structure as well
as parameter values with higher accuracy that is similar to
the correct one. After being ascertained by these results
we employed Trigonometric mutation Differential Evolution
(TDE) as optimizer in our algorithm for estimating parame-
ters of S-System model based genetic networks (See Section
3).

3. PROPOSED METHOD
3.1 Concept

Continued development in the community has led to the
discovery of two major pitfalls for S-system based gene regu-
latory network estimation. Firstly, use of a single time series
for a gene is not sufficient to identify a unique solution for
a complex system like gene network. This is because, it is
only one path in a phase diagram and from such a single
path no general conclusions about the overall behavior of
the dynamic system can be drawn [18]. The other one is
identifying the sparse structure of the biological networks.
Because of the deceptive nature of the problem, solutions
often converge to different local minima each of which repro-
duces almost same time-course. So any method attempting
to capture the time dynamics only, fail to obtain the skeletal
structure. Use of multiple time courses is being considered
as a remedy for the first ambiguity. Use of an additional
term called pruning term or penalty term for augmentation
of the fitness equation was very successful to deal with the
second difficulty [7][8]. Use of these two techniques were
key points in our method as well as we have applied a it-
erative procedure to identify the skeletal structure progres-
sively which Kikuchi et al. have called gradual optimization
strategy [7].
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3.2 Fitness Function

For identifying the sparse network structure which is more
usual for real biological systems we extended the basic fit-
ness function of (2) by adding a term based on Laplacian
regularization term. The augmented fitness function takes

the form of
(Xi,cal,t - Xi,ezp,t ) 2
Xi,exp,t
1
t¥ > gl + > il
iJ ij

In our algorithm this new fitness function (5) is used for
obtaining rough skeletal structure of the network and the
basic fitness (2) function is used to find the more accurate
parameter values for the network, based on the structure
estimated by (5). In our search we look for a set of param-
eters which will minimize the fitness value f expressed by
(5). So the presence of the second term will force all the
kinetic orders (g;; and h;;) towards zero. Therefore, while
searching, the first term (the original fitness function) will
try to find a set of parameters which will reproduce the time
course, on the other hand the second term will try to find
a set of parameters which will minimize it. And because of
their join activity search will be directed to the sets of pa-
rameters which will have many zero values for g;; and h;j,
representing skeletal structures. And by applying progres-
sive refinement for identifying the complete sparse structure,
the target network will be attained. In this fitness function
our originality is the use of the reciprocal of network dimen-
sion as coefficient in penalty term. The reason for using
this coefficient is to reduce the effect of the penalty term in
total fitness as the network dimension grows. As the dimen-
sion of the genetic network increases the penalty term as
well as the fitness value will also increase. Since we search
for the minimum value of the fitness function, the search
may be misguided because of the presence of large value of
penalty term. Therefore to keep the effect of the penalty
term indifferent with the increase of network components,
we proposed the fitness function in (5).

3.3 Algorithm

As mentioned earlier, the S-system model of a sparse bio-
logical network will have many zero-valued parameters which
have no effect in generating the system dynamics. Therefore
if it is possible to identify these parameters then it will be
easier to estimate the other parameters of S-system model
more accurately. Since it is difficult to optimize all the pa-
rameters of S-system model simultaneously (because of the
deceptive nature of the problem and presence of many lo-
cal minima) we applied an iterative procedure to gradually
detect those parameter values which become almost zero.
Once we can identify a parameter as zero in some itera-
tion then in the next iteration starting from the beginning
we have to optimize fewer parameters and hope to iden-
tify other zero-valued parameters, if there is any. And this
procedure is repeated until no more zero valued parameter
could be detected.

For identifying the correct network structure and estimat-
ing accurate parameter values, in each iteration of our al-
gorithm we optimized the S-system model parameters using
three steps described below:

f=

>

N
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Table 1: S-system parameters for target network

| i | git | Gi2 | 9i3 | Gia | Gis Bi | hin | hio | hiz | hia | his
1(50 (00|00 |10(00]-10]100]20] 0.0 {0.0]0.0]0.0
21100|20| 00 |00]|00]| 00 ]100|00] 20 ]00]|0.0]0.0
3110.0|00]|-1.0|0.0]|00]| 00 ]100|0.0]-1.0|20]|0.0]0.0
4180 00| 00]2000(|-10|100|00| 00 |00]20]0.0
5]110.0 00| 00 |0.0]|20]| 00 |100|0.0] 0.0 |0.0]|0.0]20

(S1) The first step, which we call Structure Identifi-
cation Step, optimizes the parameters of the whole ge-
netic network using the fitness function (5) for identifying
the skeletal structure. In the first iteration of optimization,
this step starts with a population where each parameter for
each of its individuals is randomly initialized. In the sub-
sequent iterations, optimization begins with random pop-
ulation where each individual will have zero values for all
those parameters which were identified as zero in previous
iteration.

(S2) In the second step of optimization we use gene-wise
optimization for parameters using fitness function (2). In
other words, in this step, starting with the resulting popu-
lation of previous step as initial population, we try to tune
the parameters for each gene separately, keeping the param-
eters of other genes fixed. The purpose of this step is to
adjust the parameter values more accurately based on the
identified structure in previous step, so we call it Fine Tun-
ing Step.

(S3) The final step is the Synchronization Step where
we try to compensate for any over tuning due to gene-wise
adjustment in Step S2. This is done by optimizing all the
parameters of the whole gene network using fitness function
(2) and the final population of second step as the initial
population. In each of these steps we employed TDE as
optimizer, for finding a suitable parameter set for the target
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Figure 5: Method for escaping local minima

Escaping Local Minima

At the end of each iteration of our optimization algorithm
we will find a solution for the target S-system model which
possibly converged to a local optimum and failed to attain
the actual parameter set. And because of local convergence
it may lose some essential regulatory interaction among the
genes. In other words we can say, due to convergence to
local minima some parameter value could go down to zero,
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which is not actually zero in the target parameter set. In
order to get rid of these incorrect identifications of param-
eter values as zero, due to convergence in local minima,
we evolve multiple solutions (I'1,I'2,---,T",) in each iter-
ation. Initialized with different random populations each
of these solutions will possibly resolve to different local op-
tima but will have same essential parameters. So at the end
of each iteration we nullify only those regulatory interac-
tions as zero which are identified as zero in every solution
I'i(1 <=1i <= p). The concept is illustrated in Figure 5 for
N =2 and p = 3. Adopting this technique ensures not to re-
move any essential regulatory interaction among the genes,
as well as helps to avoid sticking in local minima. As the
search progresses, at the end of each iteration, the proposed
method will identify which parameters are more important
and which are zero-valued, escaping local convergence. Fi-
nally, when no more parameters could be identified as zero
at the end of some iteration, we assume the remaining reg-
ulatory interactions are indispensable for the network, and
this completes the optimization process.

4. EXPERIMENT

To confirm the effectiveness of the proposed algorithm
we experimented with an artificial genetic network inference
problem. As the target network we used a small-scale S-
system model with the parameter set listed in Table 1 [7].
This network was first studied by Tominaga in [19] and later
many others have experimented with it [7, 8, 18]. Hence this
network, which represents a typical gene interaction system
consisting of 5 genes, has become like a benchmark network
for evaluating the performance of optimization algorithms
for S-system models.

Table 2: Sets of initial gene expression levels used

Trial X1 X2 X3 X4 X5
1 0.70 | 0.12 | 0.14 | 0.16 | 0.18
2 0.10 | 0.70 | 0.14 | 0.16 | 0.18
3 0.10 | 0.12 | 0.70 | 0.16 | 0.18
4 0.10 | 0.12 | 0.14 | 0.16 | 0.70
5 0.10 | 0.12 | 0.14 | 0.70 | 0.70
6 0.10 | 0.12 | 0.14 | 0.70 | 0.18
7 0.70 | 0.70 | 0.14 | 0.16 | 0.18
8 0.10 | 0.70 | 0.70 | 0.16 | 0.18
9 0.10 | 0.12 | 0.70 | 0.70 | 0.18
10 0.70 | 0.12 | 0.14 | 0.16 | 0.70

As specified in Section 3.1, if an insufficient amount of
time series data is used for estimating the parameters for
S-system model many candidate solutions will evolve due to
the high-degree of freedom of the model. Therefore Kikuchi
et al had used 50 time series data for solving this 5 gene
network [7]. We have also used the same sets of time series



Table 3: Parameters estimated using 5 sets of time series

{ 2 gi1 gi2 gi3 gia gis Bi hia hiz his | hia | his
1| 495 | 0.0 0.0 | 097 | 0.0 |-0.99 | 10.06 | 1.99 | 0.05 | 0.0 | 0.0 | 0.0
2| 10.01 | 1.97 | 0.0 0.0 | 0.0 0.0 9.89 | 0.0 | 1.94 | 0.0 | 0.0 | 0.0
31965 | 0.0 |-098| 0.0 | 0.0 0.0 9.60 | 0.0 [-0.99 | 2.26 | 0.0 | 0.0
4 779 [ 005| 0.05 |18 | 0.0 |-097 | 9.82 | 0.0 0.0 0.0 | 2.06 | 0.0
51 10.12 | 0.0 0.0 0.0 [ 1.99 | 0.0 | 10.13 | 0.0 0.0 0.0 | 0.0 | 1.98
Table 4: Parameters estimated using 10 sets of time series
{ 2 gi1 gi2 gi3 gia gis Bi hix hiz his | hia | his
1] 499 | 0.0 0.0 | 1.00 | 0.0 |-1.00 | 999 | 2.00| 0.00 | 0.0 | 0.0 | 0.0
21999 [ 199 | 0.0 0.0 | 0.0 0.0 999 | 0.0 | 1.99 | 0.0 | 0.0 | 0.0
3110.00 | 0.0 |-0.99| 0.0 | 0.0 0.0 | 10.00 | 0.0 | -1.00 | 1.99 | 0.0 | 0.0
4| 800 | 0.00| 0.00 | 2.00 | 0.0 |-0.99 | 10.00 | 0.0 0.0 0.0 | 1.99 | 0.0
5| 10.00 | 0.0 0.0 0.0 | 1.99 | 0.0 | 10.00 | 0.0 0.0 0.0 | 0.0 | 1.99

data in our experiments. The initial values of these sets are
listed in Table 2. The sets of time-series were obtained by
solving the set of differential equations (1) on the model in
Table 1. A typical set of time course, obtained from trial 1
of Table 2, is shown in Figure 2. To show the effectiveness
of proposed method we perform two separate experiments
using the time dynamics. In our first experiment we used
25 time series obtained from the first five trial sets of Ta-
ble 2 for optimizing the network parameters, and the second
experiment was performed using all of the 50 series. From
each time series data 25 sampling points were used for op-
timization.

The conditions of our experiments were as follows. The
search regions of the parameters were [0.0, 15.0] for «; and
Bi, and [—3.0,3.0] for g;; and h;;. The parameter values
for TDE algorithm were F' = 0.5, CF = 0.8 and M; = 0.05,
population size was 600 and the maximum number of gen-
eration was 1600 for each of the three steps S1, S2 and S3.
In each iteration we evolved 5 (p =15) independent solu-
tion from which we identified the parameters whose values
reached zero. Our algorithm was implemented in Java lan-
guage and the time required for a single evolution in one
loop was approximately 10 hours for first experiment and 18
hours for second experiment using a PC with Athlon 2200
MHz processor and 512MB RAM.

In order to reduce the computational burden a structure
skeletalizing was applied in a similar fashion used by Tom-
inaga et al in [19]. If the absolute value of a parameter is
less than a threshold value § then structure skeletalizing re-
set it to zero. This process reduces the computational cost
as well as helps to identify the zero valued parameters. In
our experiment 6 = 0.05 was used.

5. RESULT

Table 3 shows the parameters estimated by our algorithm
in the first experiment (5 set of trial data used). As shown
in the table our model was able to attain the over all net-
work structure and parameter values were also very close to
targeted values. The sum of the squared relative error, be-
tween the time-courses produced by the inferred model and
the given time series data, i. e. the final value of fitness
function (2), is 4.2 x 1072, Our algorithm iterated 5 times
to settle on this parameter sets. At the end of first iteration
19 parameters were identified to have zero values. In the

subsequent iterations the numbers of parameters inferred to
have value zero were 30, 33, 34 and 34 successively. At the
last iteration the algorithm could not identify any more zero
valued parameters and hence the optimization ends leaving
3 zero valued parameters unidentified. These three param-
eters (hiz, ga1 and ga2) were still very close to zero, which
proves that the search was directed in the right way. We
also experimented with other 5 sets of trail data (chosen
from Table 2). The results (not shown here) were more or
less similar to that shown in Table 3.

The parameters estimated for the target gene regulatory
network, using 10 sets of time series data, is shown in Table
4. This time our algorithm was able to identify the correct
network structure i.e. all the 37 zero valued parameters were
correctly identified. To estimate this set of parameter values
our algorithm took 6 iterations identifying 18, 28, 30, 35, 37
and 37 zero valued parameters in respective iterations. If we
look at the other estimated parameter values then it would
be found that they are pretty close to the actual parameter
values. And the sum of the squared relative error, between
the original and estimated parameter set produced time-
dynamics, is 4.5 x 1077,

6. DISCUSSIONS

Recently many researchers have used evolutionary compu-
tation for model based inference of gene regulatory network,
one of the most important problems in bioinformatics. In
our work we investigate the suitability of Differential Evolu-
tion (DE) for genetic network estimation problem. From our
preliminary study, using two different small scale networks,
we found that DEs yielded better fitness values compared
to a standard GA or ES. Between DE and TDE we found
the performance of TDE better compared to DE in terms of
both fitness value and convergence rate. These experiments
ascertain the superiority of TDE over other traditional evo-
lutionary algorithms in searching network topology and pa-
rameter values.

Attaining lower fitness value or reproducing the time-
course is not the ultimate goal in genetic network inference
problem, rather estimating the actual network structure and
parameter values is more important. To achieve this goal
we proposed an extension of the basic fitness function (2)
for identifying the sparse structure of the network which is
more common in biological systems. And to identify the cor-



rect parameter values we proposed a three step optimization
model which works with in the general framework of gradual
optimization strategy [7].

The function for evaluating fitness is extended in a similar
way done by Kikuchi and Kimura i.e. augmented by the
sum of absolute values of kinetic orders [7, 8], but here we
have used the reciprocal of network dimension, as penalty
constant, to multiply the summation. This will minimize
the effect of the penalty term on structure estimation (using
equation 5) with the increase of network dimension and thus
will help to find a more sparse structure as expected for
larger biological networks.

For estimating parameter values we have used repeated
optimization for gradual identification of zero valued pa-
rameters, which was originally proposed in [7]. But here
we have performed the optimization in 3 phases for iden-
tifying the parameter values more precisely. Experimental
results showed using the method we were able to identify
the parameter values not only with higher accuracy but also
with less number of iterations. And a well known problem
for optimizing the S-system parameters is convergence to lo-
cal minima. To deal with it we acquire multiple solutions in
each iteration and take parameters, nullified by all solutions,
as zero. This approach may slowdown the overall optimiza-
tion process as we take common zero valued parameters but
at the same time this will guarantee not to set a parameter
value as zero incorrectly and lose the essential regulation.
This method is also effective for escaping local minima, a
real obstacle to find the global optimal value for a highly
deceptive problem.

It is well known that if insufficient amount of time course
data is used for inferring S-system parameters then, because
of the flexibility of the model, it will converge to many local
minima. The number of time series data required for each
gene to uniquely identify the correct regulatory structure
depends on the number of network components, nature of
their interaction and regulation, the optimization algorithm
applied, even the properties of the time series used. Unfor-
tunately no concrete research has been done so far to illu-
minate this issue. However it is expected that using higher
number of time courses the network parameters could be es-
timated with higher precision. But with the increase of time
courses, the time for finding a solution also increases expo-
nentially due to the complexity involved in solving equation
(1). In our experiments we also found higher accuracy in
estimated parameter set using more time course data for
each gene. None of the experiments using 5 sets of data
was successful to find the complete target network topology.
But all of them were still very close to actual network. On
the other hand, using 10 sets of data we could identify the
correct structure. Comparing with the results obtained by
PEACE1 (proposed by Kikuchi [7]), we found our method
was more successful in estimating the skeletal structure as
well as the parameter values. Our method captured all the
37 zero valued parameters whereas PEACE1 could identify
36 using same number of time series. Moreover our esti-
mated parameter values were also closer to actual parame-
ter values on an average when compared to those estimated
by PEACE]L. Furthermore the number of iteration required
in PEACE1 was 7 where our algorithm converged after 6
iterations. Even when the result of PEACE1 is compared
with that obtained by our method using 5 sets of time se-
ries data, the performance of our algorithm seems to be

445

pretty good. PEACE]L running on PC Cluster (Pentium III
933MHzx 1040CPUs) reportedly took 10 hours for one loop,
where our algorithm took 18 hours for a single solution in
one loop using a Athlon 2200 MHz processor. A signifi-
cant time performance improvement could be achieved us-
ing C/C++ implementation and some sophisticated method
other than fourth order Runge-Kutta method for solving S-
system equations, and our method could be easily paral-
lelized on a PC cluster.

7. CONCLUSION

In this paper we proposed an improved method for esti-
mating genetic networks using S-system formalism. We used
gradual optimization strategy implemented by Differential
Evolution (DE) for capturing the skeletal structure of biolog-
ical networks. A new fitness function together with a more
effective optimization technique was proposed. A method to
deal with the problem of local minima was also suggested.
The performance of the method was verified using a small
scale artificial network and the experiments showed that the
proposed method is capable to identify the correct topology
and to estimate parameter values close to actual. Model-
ing with differential equation, such as S-system, requires a
lot of data points for estimating the parameter values. Our
proposed method was successful to estimate parameter val-
ues more accurately compared to others method using same
number of time course data.

The proposed method works well for small networks, but
large scale networks are still out of the scope of the method
in the current form because of the high dimensionality of
the model. Maki et al. has proposed a method for subdivid-
ing the 2N (N + 1) dimensional network inference problem
(based on S-system) into N subproblems each of which are
2(N + 1) dimensional [10]. Incorporation of such decompo-
sition technique will be tried in future to adapt the proposed
method for larger networks. Application of the proposed
method to the actual biological network will verify its ef-
fectiveness more comprehensively. Still many improvements
in different aspects of the proposed method are needed for
applying it to real microarray data obtained from large scale
biological networks.
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